Branch-and-bound for biobjective mixed-integer programming

نویسندگان

  • Nathan Adelgren
  • Akshay Gupte
چکیده

We present a generic branch-and-bound method for finding all the Pareto solutions of a biobjective mixed integer program. Our main contribution is new algorithms for obtaining dual bounds at a node, for checking node fathoming, presolve and duality gap measurement. Our various procedures are implemented and empirically validated on instances from literature and a new set of hard instances. We also perform comparisons against the triangle splitting method of Boland, Charkhgard, and Savelsbergh [INFORMS Journal on Computing, 27 (4), 2015], which is a objective space search algorithm as opposed to our variable space search algorithm. On each of the literature instances, our branch-and-bound is able to compute the entire Pareto set in significantly lesser time. Most of the instances of the harder problem set were not solved by either algorithm in a reasonable time limit, but our algorithm performs better on average on the instances that were solved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient storage of Pareto points in biobjective mixed integer programming

In biobjective mixed integer linear programs (BOMILPs), two linear objectives are minimized over a polyhedron while restricting some of the variables to be integer. Since many of the techniques for finding or approximating the Pareto set of a BOMILP use and update a subset of nondominated solutions, it is highly desirable to efficiently store this subset. We present a new data structure, a vari...

متن کامل

A Branch-and-bound Algorithm for Biobjective Mixed-integer Programs

We propose a branch-and-bound (BB) algorithm for biobjective mixed-integer linear programs (BOMILPs). Our approach makes no assumption on the type of problem and we prove that it returns all Pareto points of a BOMILP. We discuss two techniques upon which the BB is based: fathoming rules to eliminate those subproblems that are guaranteed not to contain Pareto points and a procedure to explore a ...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case

This work addresses the correction and improvement of Mavrotas and Diakoulaki’s branch and bound algorithm for mixed 0-1 MOLP. We first develop about the issues encountered by the original algorithm and propose and corrected version for the biobjective case. We then introduce several improvements about the bounds and end with the proposition of a new algorithm based on the two phase method and ...

متن کامل

OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT

Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by  many researchers. Considering the quantity discount in  purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In  this paper, stochastic dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016